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ABSTRACT

It is noted that certain common linear wave operators have the
property that linear variation of the initial data gives rise to one-
dimensional evolution in a plane defined by time and some direction
in space. The analysis is given for operators arising in acoustics,
electromagnetics, elastodynamics, and an abstract system.
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1 Introduction

In this paper we point out an interesting fact concerning three common instances of linear wave
propagation (acoustic, electromagnetic, and elastic). In each case, we consider the initial-value
problem in some region of space sufficiently small that the gradients in the data can be taken
as constant. Then the evolution of that data in time corresponds precisely to that produced by

one-dimensional waves travelling in some distinguished direction. In the three instances, this
direction is defined ' by the pressure gradient, by (V x/f) x (V x 5) (not the Poynting vector),
and by any vector perpendicular to V x 6. We also consider an abstract system, to which all
2 x 2 systems in a certain class are equivalent.

2 Statemert of Result

Consider a set of linear partial differential equations in n unknowns and d space dimensions,

i=d

atq + YA, j A q = 0. (1)
i=1

A simple wave solution of (1) is a solution of the special form

q(Z, t) = rif(f" :- At)

where ! is a unit vector in the direction of wave propagation, A is the speed of propagation, and
f is an arbitrary scalar function. Such solutions exist if and only if r, is a right eigenvector of

i=d

At = E tiAi.
j=1

Linearly varying initial data for (1) can be considered as a vector space V in Rnd, conveniently
displayed as d column vectors

D = [0.,q,O.ý q,'"]-

Data giving rise to a simple wave is of the special form

D1 = [lri, t2rv...

Denote by St the subspace of V containing such data, with I fixed and A $ 0, i.e., the set of

data giving rise to one-dimensional wave motion in the direction e.
The evolution operator A that produces Otq from an element of P is an n x nd matrix whose

nullspace A'(A) comprises the set of linearly varying steady solutions to (1). We claim that for
some interesting evolution operators, such as those mentioned in the Introduction, an arbitrary
element of D can be represented as a sum of elements lying in A/ and elements lying in some St,

D =Z Nj + EZ01k St,k (2)
k

'The notation used in this paper is that bold type represents a vector such as a set of unknowns; vectors with
geometric meaning in R 3 have arrows surmounting regular type
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Note that we do not claim that N + S, = D, but that (when the trick works) the direction ,
can be chosen so that N + St includes any given element of V. To evaluate the coefficients in
(2) we operate on both sides with A, giving

Otq = E akAkre,k (3)
k

which is merely a decomposition of the time derivative onto the eigenvectors for wave motion
along t. This differs from the one-dimensional decomposition (Riemann problem) in that the
direction of !is unknown and enters into the equations nonlinearly. In the following sections we
see how this works out for various special cases.

3 Examples

3.1 Examples with Unique Solutions

3.1.1 Acoustics

For the equations governing acoustic waves in a uniform medium we have
0 11 t2 63

t2 0 0 0
At= 1t 0 0 ] (4)

where the unknowns are (p,vj)T, the pressure and velocities, and units have been chosen to
make the sound speed unity. The eigenvalues are A1,2,3,4 - -1,0,0, 1 and the non-stationary
eigenvectors axe

The expansion (3) is

which can only be solved if
t II it=-gradp,

when the wavestrengths are

o1 Pt), =( 1•t +pt).
22

3.1.2 Electromagnetics

Maxwells equations in free space, for the magnetic field B, and the electric field/i, in units for
which the speed of light is unity, give rise to

0 0 0 0 -13 12
0 0 0 £3 0 -tI

At 0 0 0 -t2 tl 0 (6)
0 63 -12 0 0 0

-13 0 tI 0 0 0
L2 -tI 0 0 0 0
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The eigenvalues A1,2 ,3 ,4 ,5 ,6 are - 1, - 1, 0,0, 1, 1 and the non-stationary eigenvectors are

r i - , rs - , r 6 =

where 9, fare any pair of unit vectors such that 9, Fform a right-handed orthogonal system.
The expansion (3) is

al F+a2 + IRI + (6 F(7)

implying

Jt= (a 6 - al)5+(a5-a 2 )f/•= -(a6 + al)f'- (Ct5 + a2)-F

For a solution to exist, both it and A) must lie in the plane spanned by 5 and F, which is the
plane normal to £. Then

" Bt x bt = curI.# x curl! (8)

and we easily find

S= - .5- D~t

a 2 = -Bt"F-Dt .,

a5 = 't. F-b,.S, (9)
ac, = A g-D•A.t.

3.2 Examples with Nonunique Solutions

3.2.1 'Cauchy-Riemann' Equations

Consider the system obtained by adding time-dependent terms to the Cauchy-Riemann equa-
tions;

Ut+Uz+VV = 0

Vt-VX+uV = 0 (10)

for which the matrix At is

At£2 l] (11)
12 -11

Gilquin, Laurens and Rosier [1] have shown that any strictly hyperbolic 2 x 2 system can be
reduced to this case by a transformation of variables, and Noelle [2] finds that any linear initial
data is the sum of three simple waves.

The eigenvalues of At are A1 , -1, A2 " 1, with eigenvectors

Stil-- r 11
rl It2 r 2  t - 2
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These can be normalised and rewritten in terms of the wave direction 0 as

=1 -sin90/2 r 2= cos 0/2
cos9/2 ' sin 0/2

and the expansion (3) becomes

s 0/2 + 02 sn 0 (12)
Vt - cos 0/2 sin 0/2

t aI I i9/ (12)
This can be solved for any choice of 0:-

a, = utsin0/2 - vtcos0/2, 02 = utcos0/2+ vtsin0/2. (13)

3.2.2 Elastodynamics
The equations governing elastic waves in a uniform isotropic medium are of the form (1) with
q = (6,p, )T where 6 is the velocity, p is the trace of the strain tensor, and 0 forms the

antisymmetric (rotational) part of the strain tensor. The strains are related to the displacements
il by

p = div 1R,

and
S= curl il.

The matrix Af can be written as

0 0 0 bil 0 13 -12
o 0 0 bo 2 -13 0 11
0 0 0 bI 3  12 -11 0
t1 t2 13 0 0 0 0 (14)
0 -13 t2 0 0 0 0

13 0 -11 0 0 0 0
-t2 6 0 0 0 0 0

Here units have been chosen so that transverse waves (S-waves) travel with unit speed, and
longitudinal waves (P-waves) with speed VAb, where the parameter b is

2M
b-1+---

and L, M are the Lam6 coefficients.
The matrix (14) has eigenvalues A1,2,3 ,4 ,5 ,6,7 - -vA,- 1 - 1,0, 1, 1, V, with non-stationary

eigenvectors

r,- -1 , r2 0 ,r3 0 (15)
0-t -s

r1= 0 , r= 0, r= 1 (16)
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Thus the expansion (3) for this case is

A- 6 F 9 5 0

From this we observe that Ot lies in the plane spanned by S, F, so that !must be chosen normal
to Ot = curl]. For any such choice of 1,

a7 + al = A
a7 - al = 6" t/b,

a6+02 = a" ' (18)
a6 -- 2 = At,

a5+a3 = at,
as - a3 = At*-.

3.3 An Example with no Solution

The following is based on a suggestion of Jonathan Goodman (Courant Institute, NYU). Con-
sider a system comprising two copies of the acoustic equations, with unknowns (iVP 1,gP,P 2).
The resulting one-dimensional wave problem has a solution only for data with 61,t 11 62,t.

4 Applications

These results have potential application to the numerical analysis of wave motion, where the
solution is often assumed to be linear within elements, and where the update strategy may
depend on whether waves are entering or leaving some region. For a critique of methods where
wave directions are determined relative to cell boundaries, see [3]. Dissatisfaction with such an
approach leads to an interest in representing multidimensional waves in a way that is coordinate-
free, but simple enough for computation. The lack of a general pattern may not be a drawback;
exploiting behaviour that is very specific to a particular equation set may be the most effective
approach.

Specific applications will turn on details of numerical technique as well as the analytical
decompositions; for that reason they are not explored here, but reference may be made to
computations of the compresible Euler equations by splitting finite-element gradients into steady
and unsteady components [4], and to a boundary condition for Maxwell's equations that uses
the above formulae to identify the direction in which waves exit the boundary [5].

In a non-numerical context, there is precedent for this analysis in the work of Frohn [6] who
studied steady three-dimensional supersonic flow by the method of strained coordinates, where
the objective is to find a coordinate perturbation such that the singularities of linear theory
become realistic shocks and rarefactions. She selected a plane containing the streamline and the
pressure gradient as the one in which a two-dimensional straining should be applied

5 Conclusions

Given a set of hyperbolic partial differential equations in D space dimensions (D > 1) and time,
together with linearly varying initial data, one may seek directions in which the evolution of the
problem takes place one-dimensionally. We have given examples in which the search succeeds
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(and a rather artificial counterexample). Since a practical computational algorithm can only be
based on a finite number of wave directions, this offers a possible basis for the creation of such
algorithms.
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